Locally realcompact and HN-complete spaces
نویسندگان
چکیده
Two classes of spaces are studied, namely locally realcompact spaces and HNcomplete spaces, where the latter class is introduced in the paper. Both of these classes are superclasses of the class of realcompact spaces. Invariance with respect to subspaces and products of these spaces are investigated. It is shown that these two classes can be characterized by demanding that certain equivalences hold between certain classes of Baire measures or by demanding that certain classes of Baire measures have non empty support. It is known that a space is locally realcompact if and only if it is open in its Hewitt-Nachbin realcompactification; we give an external characterization of HNcompleteness with respect to the Hewitt-Nachbin realcompactification. In addition, a complete characterization of products of these classes is given.
منابع مشابه
Realcompactness and Banach-Stone theorems
For realcompact spaces X and Y we give a complete description of the linear biseparating maps between spaces of vector-valued continuous functions on X and Y , where special attention is paid to spaces of vector-valued bounded continuous functions. These results are applied to describe the linear isometries between spaces of vector-valued bounded continuous and uniformly continuous functions.
متن کاملMaximal Realcompact Spaces and Measurable Cardinals
Comfort and Hager investigate the notion of a maximal realcompact space and ask about the relationship to the first measurable cardinal m. A space is said to be a P (m) space if the intersection of fewer than m open sets is again open. They ask if each realcompact P (m) space is maximal realcompact. We establish that this question is undecidable.
متن کاملCyclic Cohomology of Certain Nuclear Fréchet and Df Algebras
We give explicit formulae for the continuous Hochschild and cyclic homology and cohomology of certain ⊗̂-algebras. We use well-developed homological techniques together with some niceties of the theory of locally convex spaces to generalize the results known in the case of Banach algebras and their inverse limits to wider classes of topological algebras. To this end we show that, for a continuou...
متن کاملOne-point extensions of locally compact paracompact spaces
A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...
متن کاملQuotients of Strongly Realcompact Groups
A topological group is strongly realcompact if it is topologically isomorphic to a closed subgroup of a product of separable metrizable groups. We show that if H is an invariant Čech-complete subgroup of an ω-narrow topological group G, then G is strongly realcompact if and only if G/H is strongly realcompact. Our proof of this result is based on a thorough study of the interaction between the ...
متن کامل